A minimal system for Tn7 transposition: the transposon-encoded proteins TnsA and TnsB can execute DNA breakage and joining reactions that generate circularized Tn7 species.

نویسندگان

  • M C Biery
  • M Lopata
  • N L Craig
چکیده

In the presence of ATP and Mg(2+), the bacterial transposon Tn7 translocates via a cut and paste mechanism executed by the transposon-encoded proteins TnsA+TnsB+TnsC+TnsD. We report here that in the presence of Mn(2+), TnsA+TnsB alone can execute the DNA breakage and joining reactions of Tn7 recombination. ATP is not essential in this minimal system, revealing that this cofactor is not directly involved in the chemical steps of recombination. In both the TnsAB and TnsABC+D systems, recombination initiates with double-strand breaks at each transposon end that cut Tn7 away from flanking donor DNA. In the minimal system, breakage occurs predominantly at a single transposon end and the subsequent end-joining reactions are intramolecular, with the exposed 3' termini of a broken transposon end joining near the other end of the Tn7 element in the same donor molecule to form circular transposon species. In contrast, in TnsABC+D recombination, breaks occur at both ends of Tn7 and the two ends join to a target site on a different DNA molecule to form an intermolecular simple insertion. This demonstration of the capacity of TnsAB to execute breakage and joining reactions supports the view that these proteins form the Tn7 transposase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Tn7 transposase is a heteromeric complex in which DNA breakage and joining activities are distributed between different gene products.

The bacterial transposon Tn7 translocates by a cut and paste mechanism: excision from the donor site results from double-strand breaks at each end of Tn7 and target insertion results from joining of the exposed 3' Tn7 tips to the target DNA. Through site-directed mutagenesis of the Tn7-encoded transposition proteins TnsA and TnsB, we demonstrate that the Tn7 transposase is a heteromeric complex...

متن کامل

Tn7 transposition: target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system.

We have reconstituted the transposition of the bacterial transposon Tn7 into its specific insertion site attTn7 with four purified Tn7-encoded proteins, TnsA+TnsB+TnsC+TnsD, and ATP. TnsA+TnsB+TnsC form a "core" recombination machine that recognizes the transposon ends and executes DNA breakage and joining; TnsD specifically recognizes attTn7. TnsA+TnsB+TnsC are specifically targeted to attTn7 ...

متن کامل

Unexpected structural diversity in DNA recombination: the restriction endonuclease connection.

Transposition requires a coordinated series of DNA breakage and joining reactions. The Tn7 transposase contains two proteins: TnsA, which carries out DNA breakage at the 5' ends of the transposon, and TnsB, which carries out breakage and joining at the 3' ends of the transposon. TnsB is a member of the retroviral integrase superfamily whose hallmark is a conserved DDE motif. We report here the ...

متن کامل

The Tn7 transposition regulator TnsC interacts with the transposase subunit TnsB and target selector TnsD.

The excision of transposon Tn7 from a donor site and its insertion into its preferred target site, attachment site attTn7, is mediated by four Tn7-encoded transposition proteins: TnsA, TnsB, TnsC, and TnsD. Transposition requires the assembly of a nucleoprotein complex containing all four Tns proteins and the DNA substrates, the donor site containing Tn7, and the preferred target site attTn7. T...

متن کامل

Host proteins can stimulate Tn7 transposition: a novel role for the ribosomal protein L29 and the acyl carrier protein.

The bacterial transposon Tn7 is distinguished by its ability to insert at a high frequency into a specific site in the Escherichia coli chromosome called attTn7. Tn7 insertion into attTn7 requires four Tn7-encoded transposition proteins: TnsA, TnsB, TnsC and TnsD. The selection of attTn7 is determined by TnsD, a sequence-specific DNA-binding protein. TnsD binds attTn7 and interacts with TnsABC,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 297 1  شماره 

صفحات  -

تاریخ انتشار 2000